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Abstract

A moving-boundary nodal model has been derived for the linear and non-linear stability analysis of boiling
channels. This model is based on the integration of the conservation (partial di�erential) equations in space and an

approximation of the integral with a weighted average of the integrated variable evaluated at the boundaries of the
nodes. The resulting system of ODEs has been used to evaluate the linear stability of a boiling vertical channel. The
results obtained with this model, using a relatively small number of nodes, compare favorably with experimental
results and calculations obtained with distributed parameter and ®xed node models, which require the use of many

axial nodes. Supercritical and subcritical Hopf bifurcations have been identi®ed, and the frequency response of the
model has been evaluated. These results have been used as the criteria for the determination of the number of
single-phase nodes needed for a given frequency range. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Density-wave oscillations may appear in natural cir-

culation boiling systems, such as passive boiling water

nuclear reactors (e.g. SBWR). These oscillations may

compromise the operational safety of these systems, as

well as their mechanical integrity. Given the complex-

ity of such systems it is neither practical nor safe to

perform prototypical experiments. A reasonable

approach to the study of the stability of boiling sys-

tems is the combination of smaller scale experiments

and the development of quali®ed numerical models to

simulate the behavior of these systems.

The current understanding of density-wave oscil-

lations is fairly good for linear phenomena (e.g., the

onset of instabilities), but is not as well advanced for

non-linear phenomena. In particular, limit cycle and

chaotic instability modes are not very well understood.

Signi®cantly, density-wave oscillations have been

observed in operating nuclear reactors, such as those

documented during the LaSalle incident [1]. The

appearance of density-wave oscillations has also been

reported in a pressurized heavy water nuclear reactor

(PHWR) [2] under natural circulation after a pump

trip. Signi®cantly, the proposed new SBWR operates

in natural circulation and is thus inherently prone to

density-wave instabilities.

The stability of boiling channels has been studied

previously by numerous authors. Ishii [3] presented a

simpli®ed analytical criterion for the linear stability of

a boiling channel for homogeneous and drift-¯ux

models and established the phase-change number, Npch
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(i.e., the Zuber number, NZu) and the subcooling num-

ber, Nsub, as the two most important non-dimensional

parameters that de®ne the stability of a boiling system.

Saha [4] obtained comprehensive experimental results

for a boiling channel. He determined the linear stab-

ility map for density-wave oscillations. Achard et al.

[5] used a distributed parameter homogeneous equi-

librium model (HEM) to perform linear stability and

dynamic bifurcation analysis. Both supercritical and

subcritical Hopf bifurcations were found. Lahey and

Podowski [6] presented a general analysis of the

dynamics of two-phase ¯ows and illustrated this

approach using a boiling channel. Clausse and Lahey

[7] presented a nodal, lumped parameter, HEM model

with moving nodal boundaries, based on a Galerkin

nodal approximation of the conservation equations for

a boiling channel, and, by numerically integrating the

nodal equations, they found limit cycles and chaotic

oscillations. Takenaka [8] and Chang et al. [9]

expanded this model to simulate the dynamics of a

BWR and an SBWR.

In this paper, a moving boundary nodal model is de-

rived for the stability and bifurcation analysis of a

heated boiling channel. The model is based on the

technique used in ®xed nodal models [10], where the

nodal integral of the variables in the conservation

equations are approximated by a weighted average of

those variables evaluated at the boundaries of the

nodes. In this model, the integration domain is time

dependent, and this characteristic means that a much

smaller number of nodes is needed.

2. Derivation of the model

In deriving the system of ordinary di�erential
equations that represents the nodal model of a parallel

boiling channel, the following assumptions have been
made:

. The system pressure is constant

. The ¯ow is one-dimensional

. The power is uniform in the axial direction

. Both phases are incompressible

. Subcooled boiling is included via Levy's pro®le-®t
model [11]

. The phasic slip between the phases is quanti®ed by

drift-¯ux parameters, C0 and Vgj [12]
. Viscous dissipation, kinetic energy, potential energy

and ¯ow work are neglected in the energy equation

. The liquid inlet temperature is constant

. The heated channel is vertical

The non-dimensional, 1-D continuity, momentum and
energy conservation equations for the two-phase mix-
ture are [11]:

2.1. Mass

@u�

@z�
� 0, single-phase region

@ h �r i�
@ t�

� @G
�

@z�
� 0, two-phase region �1a�

Nomenclature

Axÿs cross-sectional ¯ow area
DH hydraulic diameter
G mass ¯ux

h enthalpy
k thermal conductivity
K hydraulic loss coe�cient

Lj length of axial node-j
p pressure
Qj energy production in axial node-j

q0 heat ¯ux
s Laplace variable
t time
u velocity

vk speci®c volume of phase-k
vfg vgÿvf
hxi ¯ow quality

z axial position

Greek symbols
a void fraction
Lj 1/2fLj/DH=friction loss number

x weighting factor
r rga+rf (1ÿa )=mixture density
o angular frequency

Subscripts
f liquid
g vapor
i inlet

e exit

Other symbols
NVG net vapor generation (point)

1F single-phase
2F two-phase
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2.2. Momentum
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2.3. Energy
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The non-dimensional state equation is given by [11]:

h �r i � 1, single-phase region
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�
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vf
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where,

hxi � h�
vf

vfg

NZu, thermodynamic equilibrium

hxi � NZu

(
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vf

vfg
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ÿ h�NVG�
vf
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exp
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h�NVG
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,

subcooled boiling
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Levy's pro®le-®t model has been used to model sub-
cooled boiling [11].

The Zuber number (also called the phase-change
number), NZu, is de®ned as:

NZu � q00PHLH

Axÿsrfui0

vfg

hfgvf

�3�

3. Nodalization criterion

Two regions can be identi®ed in the boiling channel:
a single-phase region, which extends from the inlet of
the channel to the net vapor generation (NVG) point,

and a two-phase region, which extends from the NVG
point to the exit of the channel. The boiling channel is
divided in N=N1F+N2F nodes with moving bound-

aries, where N1F and N2F are the number of nodes in
the single-phase and two-phase region, respectively.
The boundaries of the nodes follow the axial position

inside the channel where the enthalpy of the ¯uid (or
of the liquid/vapor mixture in the two-phase region)
reaches a determined value. In the single-phase region,
the upper boundary of the nth node follows the pos-

ition inside the channel where the non-dimensional
enthalpy of the liquid is equal to h+

n =h+
i +nDh+

1F,
where h+

i is the non-dimensional inlet enthalpy and

Dh+
1F=(h+

NVGÿh+
i )/N1F is the change in enthalpy in

each single-phase (1F) node.
Analogously, the upper boundary of the nth node in

the two-phase region is de®ned as the axial position
inside the channel where the enthalpy of the two-phase
(2F) mixture reaches the values h+

n =h+
NVG+

(nÿN1F)Dh
+
2F, where, Dh+

2F=(h+
e ÿh+

NVG)/N2F, is the
change in enthalpy in each two-phase node.
The derivation of the ODEs that describe the

dynamics of the boiling channel is based on the inte-

gration of the spatial variable in the conservation
equations. The conservation equation is integrated
inside each node, [L+

nÿ1, L
+
n ]. The general form of this

integral can be written as:
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The integration domain is time dependent: thus

Leibnitz's rule has to be applied to integrate the ®rst
term:

d

dt�

�L�n
L�
nÿ1

y dz�

ÿdL�n
dt

y�L�n � �
dL�nÿ1

dt�
y�L�nÿ1� � F�L�n � ÿ F�L�nÿ1�

�
�L�n
L�
nÿ1

H�z�� dz�

�5�

The integrals can be written in terms of the nodal aver-
age of the integrand as:�L�n
L�
nÿ1

f dz� � �L�n ÿ L�nÿ1�fn �6a�
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where,

fn � xkf �L�n � � �1ÿ xk� f�L�nÿ1� k � 1F, 2F �6b�

The resulting ODE for the nth node is then:

�L�n ÿ L�nÿ1�xk
dyn
dt�
� �L�n ÿ L�nÿ1��1ÿ xk�

dynÿ1
dt�

� �yn ÿ yn�dL
�
n

dt�
ÿ �yn ÿ ynÿ1�dL

�
nÿ1

dt�

� �L�n ÿ L�nÿ1�Hn � F�L�nÿ1� ÿ F�L�n � �7�

4. Single-phase region

The single-phase region extends from the inlet of the

channel to the net vapor generation point LNVG. The
net vapor generation point (NVG) is de®ned as the
axial position where subcooled boiling begins. The cri-

terion used in the determination of the onset of sub-
cooled boiling is given by the non-dimensional form of
the modi®ed Saha correlation [4] given by Clausse and

Lahey [13]:
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q0�GPe0

455
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where,

Pec � 70,000�1� 99Sti�ÿ1 �8b�

Pe0 � rfui0cpfDH

kf

�8c�
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PHLH

�8d�

Z � 99

99� 1

Sti

�8e�

Sti � ÿq0�G
u�i h

�
i
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To obtain the set of ODEs that describe the dynamics
of the single-phase region, the procedure described in

the preceding section has been applied to the single-
phase energy conservation equation. The following
ODE is obtained for the nth node:

�1ÿ x1F�
dL�nÿ1

dt�
� x1F

dL�n
dt�
� u�i ÿ

 
�Q
�
n
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NZuDh�1F

� n
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dt�

!
�L�n ÿ L�nÿ1�

�9�

In this set of equations, time is the remaining indepen-
dent variable and the dependent variables are the inlet
velocity and the position (i.e., the NVG point) of the

boundaries of the nodes, L+
n . The N1Fth equation is

the ODE for the boiling boundary, where N1F should
always be chosen to be an even number. The enthalpy
of the NVG point will depend on the value of the

Peclet number.

5. Two-phase region

The two-phase region extends from the NVG point
and the exit of the channel. To obtain a set of ODEs
for the dynamics of the two-phase region, the pro-

cedure for the integration of the conservation
equations has been applied to the continuity equation
of the two-phase mixture:

�L�n ÿ L�nÿ1�
d

dt�
h �r i�n �

�
h �r i�n ÿ h �r i�n

�
dL�n
dt�

ÿ
�
h �r i�n ÿ h �r i�nÿ1

�
dL�nÿ1

dt�

� G �n ÿ G �nÿ1 �10�

The average of the density can be approximated as in

Eq. (5b):

dh �ri�n
dt�

� �1ÿ x1F�
dh �r i�nÿ1

dt�
� x2F

dh �r i�n
dt�

�11�

and the time derivative of the density is given by:
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where the kth node is the ®rst node in the two-phase

region where the enthalpy becomes positive.

Substituting into Eq. (10) yields a nodal ODE for the

dynamics of the two-phase region:
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where the coe�cients of the time derivatives are:
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6. Closure

At this point, there is one more unknown than there
are ODEs. Closure can be derived by integrating the

momentum equation in space for the heated channel:
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which yields the following equation:

Euÿ Dp�g ÿ Dp�lf ÿ Dp�f ÿ Dp�df ÿ Dp�a

�
XN1F

n�1
a�n,N� 1�dL

�
n

dt�
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dt�

�16�
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where, N=N1F+N2F; Dp
+
g is the gravity pressure loss;

Dp+
lf is the localized hydraulic loss; Dp+

f is the distrib-

uted friction loss; Dp+
df is the drift-¯ux term; Dp+

a is
the spatial acceleration term. These terms are given by:

Dp�g � L�NVG ÿ bN̂pch

XN1F

n�1
h�n �L�n ÿ L�nÿ1�

�
XN
n�N1F

h �r i�n �L�n ÿ L�nÿ1� �17a�

where the Boussinesq approximation [8] has been used

to approximate the dependence of the liquid density
on enthalpy in the single-phase region.
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where the localized hydraulic losses are assumed to be
concentrated at the inlet and exit of the heated chan-
nel.
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The integration of the inertia term yields the following
coe�cients for the time derivatives:
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7. Linear stability analysis

The system of nonlinear ODEs obtained with the
generalized nodal model can be written in matrix form
as,

_x � f�x� �19a�
where,

x � �L�1 , . . . ,L�N
1Fÿ1

, L�NVG, . . . , L�N1F�N2F
, h�e , . . . ,

h�NR
, . . . , u�i �T

�19b�

is the matrix vector of dependent variables.
The system of nonlinear ODEs was linearized

around its ®xed points and the eigenvalues of its

Jacobian matrix were calculated. The linear stability of
the system can be determined from the eigenvalues, li,
of the Jacobian matrix. If all the eigenvalues, li, have
negative real parts, the system is linearly stable. This
means, that if a small perturbation is applied to the
system, it will go back to the stable ®xed point, or

steady state. If an eigenvalue is real and positive, the
system has an excursive instability, (i.e., a small pertur-
bation applied to the system in the steady state will

cause a divergence away from this unstable ®xed
point). If any pair of complex conjugate eigenvalues
have positive real parts, the system is linearly unstable
and oscillatory (i.e., an unstable phase-plane spiral).

This means that a small perturbation applied to the
system in the unstable steady state will cause a diver-
gence away from the steady state in an oscillatory

fashion.
The eigenvalues of the system were calculated nu-

merically for di�erent numbers of axial nodes and for

di�erent values of x1F and x2F, and the linear stability
boundary plotted in the NzuÿNsub phase plane. Fig. 1
shows the linear stability boundary between a D0

region, where the system is linearly stable, and the D2

region, where the system has a periodic oscillatory re-
sponse, for x1F=x2F=0.5, and for di�erent number of
nodes in the single-phase region of a boiling channel.

It is apparent from the ®gure that increasing the num-
ber of nodes leads to a better agreement with the ex-
perimental results, and nodal convergence was

essentially achieved for N1F=6 nodes.

8. Hopf bifurcation analysis

Nonlinear oscillatory responses have been observed
in nuclear reactors. Since oscillations can lead to oper-

ational situations where the safety of the reactor may
be compromised, the ability to predict them is necess-
ary. A system of ODEs is said to go through a Hopf
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bifurcation at a ®xed point (x0, m0) if [14]:

. The Jacobian matrix of the system at the ®xed
point, J�x 0, m0), has a pair of pure imaginary eigen-
values and no other eigenvalues with zero real parts.

. d/dmk Rel�mk�� jm�m
0
6� 0, where m0 is a vector of par-

ameters, and mk is an element of that vector, selected
as the bifurcation parameter.

The bifurcation analysis was performed by adding a
subroutine with the ODEs derived herein, using the
nodal method, to the computer program AUTO [15].

Fig. 2 shows a supercritical Hopf bifurcation. In this
calculation, the subcooling number, Nsub, the Euler
number, Eu, the distribution friction number, L, and
the inlet and exit ¯ow restriction coe�cients were

maintained constant and equal to their value at the lin-
ear stability boundary. The bifurcation parameter, m,
was de®ned as:

m � NZu ÿNZu0 �20�

where the subscript 0 denotes the value of the par-
ameter at the linear stability boundary.

Unstable limit cycles were found in the regions of

the parameter space where previous works found the
same response [5]. Fig. 3 presents a typical subcritical
Hopf bifurcation for Ki=Ke=0.0. In this situation, if
the system is perturbed with an amplitude larger than

the amplitude of the unstable limit cycle (dashed line),
the solution diverges. In contrast, if the amplitude of
the perturbation is smaller than the maximum of the

unstable limit cycle, the system evolves to the stable
®xed point. This implies a region in parameter space
where a perturbation with a large enough amplitude

may cause an excursive instability in a linearly stable
system.

9. Frequency domain analysis

Since the set of ODEs for the forced single-phase
region are linear, classical control theory can be
applied to analyze the frequency response of the sys-

tem as a function of the number of nodes and compare
it with the frequency response of the system de®ned by
the transfer function of the inlet velocity as input and

the time evolution of the boiling boundary as output
[16]. Assuming saturated boiling, the equation for the
n-th node is given by:

Fig. 1. Linear stability map. E�ect of the number of nodes.

Fig. 2. A typical supercritical Hopf bifurcation for a boiling

channel.
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x1F
dL�nÿ1

dt�
� �1ÿ x1F�

dL�n
dt�
� u�i ÿ a�L�n ÿ L�nÿ1� �21�

where, a=Q+NZu/Nsub.
Laplace transforming both sides of the equation

yields:

sx1FLn�s� � s�1ÿ x1F�Lnÿ1�s� ÿU�s� ÿ aLn�s�

� aLnÿ1�s� �22�

where the indication of non-dimensional quantity (+)
has been dropped for simplicity, and it has been

assumed that the arbitrary initial condition for the
boundaries of all the nodes is equal to zero. Solving
for Ln(s ) and back-substituting Lnÿ1 results in the fol-
lowing expression:

Ln�s� �
(

U�s�
�ÿa� x1Fs�

ÿ U�s��a� �1ÿ x1F�s�
�ÿa� x1Fs�2

� U�s��a� �1ÿ x1F�s�nÿ1�ÿ1�nÿ1
�ÿa� x1Fs�n

� � � �
)

�23�

The transfer function, G, of a linear system is de®ned

as the ratio between the output and the input (in this
case, the boiling boundary and the inlet velocity, re-

spectively), therefore:

G�s� � LN1F �s�
U�s� �

XN1F

k�1

�a� �1ÿ x1F�s��ÿ1�kÿ1
�ÿa� x1Fs�k

�

�
s�1ÿ x1F� � a�
ÿx1Fs� a

�N1F�1
�ÿx1Fs� a�

s��1ÿ x1F�s� a� ÿ 1

s
�24�

The modulus of this transfer function gives the gain of
the system.
The exact solution for the boiling boundary's

dynamics is given in Eq. (25).

N�t� � L
N
�t�
1F
�
�t
tÿv

ui�t 0� dt 0 �25�

where, v=Nsub/NZuQ
+ is the non-dimensional time

required for a particular control volume to loose its
subcooling [11].
This equation can be Laplace-transformed to obtain

the exact transfer function for the system with a
periodic inlet velocity as forcing function,
ui � ui0 � b sin�o t�:

Gexact�s� � LN1F �s�
U�s�

� ui0ov�1� o 2� ÿ b� bs�s cos�ov� � w sin�ov��
os�o 2 � s2�

�26�

The modulus of this function gives the gain of the
exact solution as:

j Gexact�s � jo � j�
�������������������������������
1�1ÿ cos�ov��p

o
�27�

Fig. 4(a, b) shows the comparison between the gain of

the nodal model and the exact solution, for di�erent
numbers of nodes and x1F=0.5 and x1F=1.0, respect-
ively. Fig. 4(a) shows a better agreement with the fre-

quency response of the exact solution. It should be
noted that the equations obtained for x1F=0.5 co-
incide with the equations obtained by integrating the
single-phase energy equations assuming a linear

enthalpy pro®le [7], and the set of equations obtained
with x1F=1.0 is the same as the equations derived
with a backward-di�erence ®nite di�erence approxi-

mation. It can also be observed that increasing the
number of nodes leads to a larger number of minima
for the nodal model and hence a better agreement with

the exact solution. These results also show that the
number of nodes must increase with frequency. The
main drawback is that for chaotic predictions, virtually

Fig. 3. A typical subcritical Hopf bifurcation for a boiling

channel.
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all frequencies are present and therefore an in®nite
number of nodes would be needed. Unfortunately, this
is a fundamental problem when any ®nite-di�erence/el-

ement scheme is used to analyze chaotic phenomena.

10. Summary and conclusions

A generalized moving boundary nodal model has
been derived for the stability analysis of boiling sys-
tems. This model agrees well with experiments and

with results obtained with previous ®xed-node and dis-
tributed-parameter models. The model predicts the lin-
ear stability of a boiling system with a fairly small
number of nodes, and weighting factors of

x1F=x2F=0.5 appear to give the best results, provided,
of course, that an even number of axial nodes (N1F)
are used in the single-phase part of the heated channel.

The comparison between the gain of the system of
ODEs and the gain of the exact solution provides a
convenient tool to estimate the number of single-phase

nodes necessary to capture the behavior of the boiling
boundary for a given cuto� frequency. This analysis
shows, in particular, that care should be exercised

interpreting the results when a large bandwidth (i.e.,
chaotic) response is obtained.
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